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Abstract. The authors present in this paper an effective Java imple-
mentation of the concept immediate successors calculation. It is based
on the lattice Java library, developed by K. Bertet and the Limited Ob-
jects Access algorithm, proposed by C. Demko and K. Bertet [6] with
Java-specific enhancements. This work was motivated by the need of an
efficient tool delivering this service in an accessible and popular program-
ming language for a wider research project: eBDtheque. Performances are
compared and analyzed.
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1 Introduction

A Galois lattice, or concept lattice, is a graph providing a representation of all
the possible associations between a set of objects, or observations, and their
describing attributes. Lattices can be queried, browsed and therefore provide a
smart way to represent and retrieve information through a description context.
Although they have been introduced a long time ago [1], they were hardly con-
sidered helpful for information retrieval before the end of the twentieth century
and the work of [9, 3, 18] due to an exponential computational time issue. Even
today, using concept lattices to handle a large set of objects described by an
even wider set of attributes can be challenging. Indeed, it is still not trivial to
use lattice’s properties in a big development project, mainly because of the lack
of available software frameworks. Being in need of such a tool to browse and
query a dataset on comic books, described by an ontology [10], we propose an
efficient Java implementation for the calculation of the immediate successors of
a concept (i.e. to get the closest refined concepts according to the description of
the starting point).

This paper is organized as follows. After introducing our motivations in part
2, the third section reminds how are calculated the immediate successors in
the state of the art. The next section details the implemented algorithm and
how it has been done in order to be as effective as possible. Section 5 shows
some experimentations related to the classical immediate successors algorithm.
Finally the last section concludes this paper and brings up some perspectives on
our ongoing work.
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2 Context and motivation

We are developing a multi-faceted solution to automatically analyze comic books
in a) an image processing point of view [19], b) a semantic point of view [10]. One
key point is the possibility for a user to retrieve comic books panels, the rectan-
gular frames in which the pictures are drawn, similar to an input query, based
on the semantic description of each panel from the dataset [11]. Two panels may
share the same kind of content, such as speech balloons, spoken words, objects,
characters or even some localized pixel’s visual features (e.g colors, textures,
shapes, etc.). They can be of the same shape, at the same location in the page
or in the narration, drawn by the same person or come from the same volume
(Table 1 and Fig. 1 show an example of what could be such shared properties).
Possibilities are only limited by the ability of our system to recognize and deduce
information. All these heterogeneous pieces of description have to be expressed
in a way that can be interrogated and browsed efficiently.

panel 1 panel 2 panel 3 panel 4 panel 5

contains:balloon 1 1 1 1 0

shape:wide 0 1 0 0 1

shape:high 1 0 0 1 0

size:medium 0 0 1 0 1

contains:tree 0 0 0 1 1

Table 1. Sample context

Fig. 1. Panel 4 from Table 1. Credit [5]



An efficient Java implementation of the immediate successors calculation 3

One way to browse data is to guide the user by a relevance feedback mech-
anism as it can classically be seen in content based image retrieval (CBIR) [20]
and machine learning [21]. To an input query, which can be a panel or a set of
features, follows a loop of interactions between the computer and the final user
that will guide him, hopefully sooner than later, to his answer. At each step, the
system returns a set of result panels that share the same attributes, weighted
by the estimated relevance of these attributes to the query. The user is then
invited to label the panels based on what he considers to be important in his
query. The relevant (resp. irrelevant) features are identified with the right (resp.
wrong) labeled results, their weight is dynamically adjusted, so the query can
be refined to produce a more accurate output. The interaction loop between the
user and the system goes on and on until the user is satisfied.

The structure of concept lattices seems to fit particularly well to the task as
each concept is made of a set of panels described by a shared set of attributes.
The output can be composed of panels from several distinct concepts, chosen
for the weight of their attributes. The user is then guided through the lattice
structure by his choices without being aware of the underlying mechanism.

As we were working with the Java language, we started looking for a way to
handle lattices that could easily be integrated to the main solution. The set of
observations is meant to be quite large as it does not become very interesting
to retrieve data until the volume gets critical. Because of the extreme hetero-
geneity of comic books’ panels, the growth of the observation set (the pictures)
automatically implies the growth of the attribute set (the description of those
pictures). Therefore, the implementation has to be efficient when dealing with
large sets of both attributes and observations.

3 State of the art

More formally, a concept lattice is defined from a binary table, also denoted a
formal context, (O, I, (α, β)) where O is the set of objects, I the set of attributes,
α(A) the set of attributes shared by a subset A of objects, and β(B) the set of
objects sharing a subset B of attributes. Each node of a concept lattice is denoted
a concept (A,B), i.e. a maximal objects-attributes correspondence, verifying
α(A) = B and β(B) = A. A is called the extent of the concept, and B its intent.
Two formal concepts (A1, B1) and (A2, B2) are in relation in the lattice when
they verify the following extension-generalization property:

(A1, B1) ≤ (A2, B2)⇔
∥∥∥∥A1 ⊆ A2

(equivalent to B1 ⊇ B2)

The whole set of formal concepts fitted out by the order relation ≤ is called
a concept lattice or a Galois lattice because it verifies the lattice properties,
and the cover relation ≺ corresponds to the Hasse diagram of the lattice. The
concepts ⊥ = (O,α(O)) and > = (β(I), I) respectively correspond to the bottom
and the top of the concept lattice. See the book of Ganter and Wille [8] for a
more complete description of formal concept lattices.
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Numerous generation algorithms have been proposed in the literature [16,
7, 2, 17]. All of these proposed algorithms have a polynomial complexity with
respect to the number of concepts (at best quadratic in [17]). The complexity is
therefore determined by the size of the lattice (i.e. the number of concepts in the
lattice), this size being exactly bounded by 2|O+I| in the worst case (when the ta-
ble context is a diagonal matrix of zeros) and by |O+I| in the best case (diagonal
matrix of ones). A formal and experimental comparative study of the different
algorithms has been published in [13]. Although all these algorithms generate
the same lattice, they propose different strategies. Ganter’s NextClosure [7] is
the reference algorithm that determines the concepts in lectical order (next, the
concepts may be ordered by ≤ or ≺ to form the concept lattice) while Bordat’s
algorithm [2] is the first algorithm that computes directly the Hasse diagram of
the lattice, by computing immediate successors for each concept, starting from
the bottom concept, until all concepts are generated. Immediate successor cal-
culation is appropriate for an on-demand generation inside the structure, useful
for a navigation without generating the whole set of concepts.

Bordat’s algorithm, independently rediscovered by [14], is issued from a corol-
lary of Bordat’s theorem [2] stating that (A′, B′) is an immediate successor of a
concept (A,B) if and only if A′ is inclusion-maximal in the following set system
FA defined on the objects set O by:

FA = {β(x) ∩A : x ∈ I\B} (1)

Immediate successors algorithm first generates the set system FA in a linear
time ; then inclusion-maximal subsets of FA can easily be computed in O(|O|3),
using an inclusion graph for example. Notice that the inclusion-maximal subsets
problem is known to be resolved in O(|O|2,5) using sophisticated data structures
([15, 12]).

It is possible to consider the restriction of a concept lattice to the attributes
set. Indeed, a nice result establishes that any concept lattice is isomorphic to the
closure lattice defined on the set I of attributes, where each concept is restricted
to its attributes part. The closure lattice is composed of all closures - i.e. fixed
points - for the closure operator ϕ = α ◦ β. Using the closure lattice instead of
the whole concept lattice gives rise to a storage improvement, for example in
case of large amount of objects. See the survey of Caspard and Monjardet [4] for
more details about closure lattices.

Closure lattices can be generated by an extension of Bordat’s algorithm (see
Alg. 1) issued from a reformulation of Bordat’s Theorem. Indeed, each immediate
successor B′ of a closure B is obtained by B′ = α(A′) with A′ ∈ FA. Since A′ =
β(x)∩A = β(x)∩β(B) = β(x+B), thus B′ = α(A′) = α(β(x+B)) = ϕ(x+B).
Therefore, immediate successors of a closure B are inclusion-minimal subsets in
a set system FB defined on the attributes set I by:

FB = {ϕ(x+B) : x ∈ I\B} (2)

The Limited Object Access algorithm (see Algorithm 2), introduced by Demko
and Bertet in 2011, is another extension of Bordat’s immediate successors gen-
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Name: Immediates Successors

Data: A context K = (O, I, (α, β)) ; A closure B of the closure lattice of K
Result: The immediate successors of B in the closure lattice
begin

Init the set system FB with ∅;
foreach x ∈ I\B do

Add ϕ(x+B) to FB

end
Succ=minimal inclusion subsets of FB ;
return Succ

end
Algorithm 1: Immediate successors algorithm

eration. Please refer to [6] for a complete description. The key idea behind this
algorithm is to improve its efficiency by counting the objects, inspired from rela-
tional databases. Instead of considering the subset of observations as the extent
of a subset of attributes, the computation of the inclusion-maximal subsets on
FA is made considering only its cardinality, and an incremental strategy. Four
cases have to be considered to test, for each attribute x of I\B and each al-
ready inserted potential successor X ⊆ I\B, the inclusion between ϕ(B + X)
and ϕ(B + x):

1. Merge x with X when ϕ(B + x) = ϕ(B +X).
2. Eliminate x as potential successor of B when ϕ(B + x) ⊃ ϕ(B +X)
3. Eliminate X as potential successor of B when ϕ(B + x) ⊂ ϕ(B +X)
4. Insert x as potential successor of B when x is neither eliminated or merged

with X.

The inclusion test between ϕ(B + X) and ϕ(B + x) can easily be performed
using the count function c and the following proposition from [6].

Proposition 1 ([6]):

ϕ(B +X) ⊆ ϕ(B + x)⇐⇒ c(B +X + x) = c(B +X) (3)

The count function c associates to any subset X of attributes the cardinality
of the subset β(X):

c(X) = |β(X)| (4)

ϕ(B) = B + {x ∈ I\B : c(B) = c(B + x)} (5)

The count function corresponds to the notion of support introduced in asso-
ciation rule-mining, and is in particular used by Titanic algorithm [22].

It has been proven to be effective on a large amount of objects with a complex-
ity of O((|I| − |B|)2 ∗O(c(B+X))). This has to be compared to the complexity
of the classical immediate successors algorithm in O(|I|2 ∗ |O|).



6 An efficient Java implementation of the immediate successors calculation

Name: Immediates Successors LOA

Data: A context K = (O; I, (α, β)) ; A closed set B of the closed set lattice
(CI ,⊆) of K

Result: The immediate successors of B in the lattice
begin

Init the set system SuccB with ∅;
foreach x ∈ I \B do

add = true;
foreach X ∈ SuccB do
\\ Case 1: Merge x and X in the same potential successor
if c(B + x) = c(B +X) then

if c(B +X + x) = c(B + x) then
replace X by X + x in SuccB ;
add=false; break;

end

end
\\ Case 2: Eliminate x as potential successor
if c(B + x) < c(B +X) then

if c(B +X + x) = c(B + x) then
add=false; break;

end

end
\\ Case 3: Eliminate X as potential successor
if c(B + x) > c(B +X) then

if c(B +X + x) = c(B +X) then
delete X from SuccB

end

end

end
\\ Case 4: Insert x as a new potential successor ;
if add then add {x} to SuccB ;

end
return SuccB ;

end
Algorithm 2: LOA immediate successors algorithm
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The ability of the algorithm to handle huge sets of data is very interesting.
The impact of the number of observations on the performances can be limited,
depending on the implementation of c, using for example multiple keys and ro-
bust algorithms used in databases that do not need to load all data for computing
a cardinality [6].

4 Implementation

4.1 Data structures

We choose to implement the Limited Object Access algorithm in Java. The per-
formance of the Limited Object Access presented in [6] comes from a PHP/MySQL
implementation, backed up by the efficient SQL indexation system. Its behavior
without the help of SQL remains to be seen.

While profiling the execution of a naive implementation, conducted without
paying attention to optimization, we noticed that up to 86% of the computation
time was used for the calculation of the candidate sets of attributes’ extent.
The extent of a set of attributes is the intersection of the extents of each of its
elements. It appears that the most time consuming step of the extent calculation
(up to 87% of the running time) is the intersection of two sets of elements. While
it only takes around 50 microseconds to perform, the calls pile grows fast with
the size of the dataset, resulting in a delivery time of full seconds, even minutes.
A particular attention must be paid to the optimization of the extent calculation,
both in terms of calls amount and processing time.

The number of calls is limited to three for a foreach loop, as c(B+x), c(B+X)
and c(B + X + x) are consistent and can be computed once and for all at the
beginning of the second loop. If they were not, the count function would have
been called up to 8 times (2 times per if, plus 2 times for the last if).

Classical Java containers, like HashSet or TreeSet, are well suited for the task
of storing the observations and attributes but are a bit too sophisticated for the
representation of a simple context’s binary table. In fact, observations do not
necessarily have to be directly manipulated to compute the extent, a fortiori its
cardinality, of a set of attributes. Assuming that the observations are sorted in
a final order, each of them can be represented by its index in this order. So the
extent of an attribute becomes a binary word whose length is the cardinality of
the observations set. In this word, a 1 (resp. a 0) means this index’s observation
is (resp. is not) part of the extent. Java, as many programming languages, has
a BitSet class to manipulate and execute operations over such data type.

The extent (resp. intent) of each attribute (resp. observation) of the context
is computed and stored as a binary word once and for all at the beginning of
the execution. Then, the extent of a set of attributes can be computed using a
logical AND on the successive extents of all of its elements (see Table 2). The
immediate benefit comes from the rapidity of the AND operation, performed in
less than one microsecond (with a complexity of O(E(n/w)), n being the length
of the bitset and w the size of the memory words used to store the basic AND
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operations). It is more than 50 times as fast as an intersection between two
TreeSets for the same number of calls. Furthermore, this sticks to the primal
boolean representation of a context (see Table 1) and the lattice (nor any part
of it) does not have to be generated at any time.

Each attribute and each object is mapped to its bit index in the binary word
for output readability purpose.

p1 p2 p3 p4 p5

contains:balloon 1 1 1 1 0

shape:high 1 0 0 1 0

contains:tree 0 0 0 1 1

Extent 0 0 0 1 0

Table 2. Extent of the set of attributes {b, h, t}

5 Experiment

The dataset is made of 848 comic books panels, the observations, and two kinds of
attributes. The first category, made of 100 attributes, is shared by the whole set
of observations with a proportion going from 2 to 11 attributes for an average of
7. 28 attributes are assigned to a single observation. The second category includes
the first one and adds 3433 attributes, leading to an average distribution of 15
attributes per observation. 3403 out of the 3533 attributes belong to less than 3
observations. Only 15 are shared by more than 100 objects.

As this system is meant to be used in a browsing context through relevance
feedback, it has to be efficient going both ways from a concept (towards its suc-
cessors and its predecessors). We ran our algorithm both on the calculation of
the immediate successors of the bottom concept ⊥ and the immediate predeces-
sors of the top concept >. We computed the latter as the immediate successors
of ⊥ on the inverted context (which is rigorously the same thing as calculating
the immediate predecessors of > in the regular context – see Fig. 2 and 3). We
choose ⊥ as starting point because, according to our dataset, it is the concept
that is supposed to have the most immediate successors.

Table 3 shows the processing times in seconds of the classical immediate suc-
cessors algorithm and the Limited Object Access algorithm, both tuned with
TreeSet and BitSet data structures for different scenarios corresponding to dif-
ferent complexity values. Processes have been run on a 8GB DDR3 machine,
powered by a 2.7GHz quad core Xeon. The results show a significant improve-
ment of the computation time which can be attributed, for one part, to LOA
and, for the other part, to the use of binary words.
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 []
[p1, p2, p3, p4, p5]

 [w]
[p2, p5]

 [t]
[p4, p5]

 [m]
[p3, p5]

 [b]
[p1, p2, p3, p4]

 [m, t, w]
[p5]

 [b, w]
[p2]

 [b, h, m, t, w]
[]

 [b, h, t]
[p4]

 [b, m]
[p3]

 [b, h]
[p1, p4]

Fig. 2. Concept lattice generated from the context presented in Table 1.
Intent: Attributes, Extent: Observations

Immediate successors Immediate predecessors

|O| = 848 |O| = 848 |O| = 100 |O| = 3533

|I| = 100 |I| = 3533 |I| = 848 |I| = 848

Classical + TreeSet 3.06 11767.52 549.76 994.00

Classical + BitSet 0.77 196.58 62.39 9.77

LOA + TreeSet 0.29 11.26 5.65 1183.75

LOA + BitSet 0.02 0.15 0.24 1.20

Table 3. Computation time (in seconds) of the immediate successors of ⊥ and imme-
diate predecessors of >.
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 []
[b, h, m, t, w]

 [p5]
[m, t, w]

 [p4]
[b, h, t]

 [p3]
[b, m]

 [p2]
[b, w]

 [p4, p5]
[t]

 [p3, p5]
[m]

 [p2, p5]
[w]

 [p1, p2, p3, p4, p5]
[]

 [p1, p4]
[b, h]

 [p1, p2, p3, p4]
[b]

Fig. 3. Concept lattice generated from the inversion of the context presented in Table 1
Intent: Observations, Extent: Attributes

The bitset improvement over the LOA implementation shows a reduction
of the execution time going from 14 to over 900 times. The calculation of the
immediate predecessors of > over the set of 3533 attributes is the worst possible
case as it results in 848 different concepts of one observation, each of them with
a set of around 20 attributes. The running time is almost entirely taken by the
million of extent calculations, which is why the gain is more spectacular here.

A test on 500 randomly picked concepts has been run over the third dataset
(|O| = 100, |I| = 848) resulting in a mean processing time of 0.18 second.

Computation time shrinkage is minimized on the classical method as the op-
timization only applies on the closure operation, which is a fraction of the global
computation time.

We deal here with computation times kept below the second on a reasonable
machine. This starts to be interesting in terms of human-machine interaction
capabilities where at least a dozen of concept’s immediate successors have to be
calculated at each step.
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6 Conclusion and ongoing work

We presented an efficient Java implementation of the immediate successors cal-
culation. The short processing times on quite large datasets are promising and
make the query by navigation through a lattice possible. The source code will
be made available soon, along a full Java library to handle lattices.
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