10th Concept Lattices and their Applications October 18, 2013 – La Rochelle

An efficient Java implementation of the immediate successors calculation

Clément Guérin Karell Bertet Arnaud Revel

Context

• eBDtheque project

– 2 PhD candidates, 4 professors

- Two research axis
 - Extraction of comic books visual items
 - Reasonning on these items
- One goal: how to help comic books to take the right turn on their digital metamorphosis?

Comic books domain model

A model combining comic books' and image's domain knowledge

Reference C. Guérin, K. Bertet, A. Revel Ontologies and spatial relations applied to comic books reading EKAW's PhD Symposium, Galway, October 2012

What for?

- Tools to ease the conversion from printed to digital comic books
 - Panels and balloons ordering
 - Association of balloons to characters
 - Scene understanding
- Information retrieval
 - Word spotting
 - Linguistic study
 - Semantic Content Base Image Retrieval

Reference C. Guérin, K. Bertet, A. Revel Ontologies and spatial relations applied to comic books reading EKAW's PhD Symposium, Galway, October 2012

Semantic Content Based Image Retrieval

 From classical Content Based Image Retrieval (CBIR)

 Use the model description of the panels to retrieve semantically and/or visually similar panels

> Reference C. Guérin, K. Bertet, A. Revel An approach to Semantic Content Based Image Retrieval using Logical Concept Analysis. Application to comicbooks. FCA4AI Workshop of ECAI, Montpellier, August 2012

What annotations?

• Panels attributes

- shape, size, position, rank, shot type, etc.

 What is "inside" a panel

 speech balloons, characters, words, objects, visual features...

• What is "outside" a panel

 the author of the comic, its style, its year of publication, etc.

> Reference C. Guérin, K. Bertet, A. Revel An approach to Semantic Content Based Image Retrieval using Logical Concept Analysis. Application to comicbooks. FCA4AI Workshop of ECAI, Montpellier, August 2012

Example

	p1	p2	р3	p4	р5
contains: <u>b</u> alloon	1	1	1	1	0
shape: <u>w</u> ide	0	1	0	0	1
shape: <u>h</u> igh	1	0	0	1	0
size: <u>m</u> edium	0	0	1	0	1
contains: <u>t</u> ree	0	0	0	1	1

Browsing context

- Formal Concept Analysis
 - Concept lattices gather panels described by the same set of attributes in concepts
 - Set of panels (resp. attributes) ordered in a browsable hierarchical structure
- Need to get the successors and predecessors of a concept very quickly

Lattice Java API

- Java language
 - Widely used programming language
 - Lattice Java API
- Implemented immediate successors algorithm from Bordat's (or Lindig's) theorem

Data: A context $K = (O, I, (\alpha, \beta))$; A closure *B* of the closure lattice of *K* **Result**: The immediate successors of *B* in the closure lattice **begin** Init the set system \mathcal{F}_B with \emptyset ; **foreach** $x \in I \setminus B$ **do** | Add $\varphi(x + B)$ to \mathcal{F}_B **end** *Succ*=minimal inclusion subsets of \mathcal{F}_B ; return *Succ* **end**

• Not fast enough

Limited Object Access algorithm

• Improved efficiency by reducing the subset of observations to its cardinality

 The count function *c* associates to any subset *X* of attributes the cardinality of the subset *β(X)*

 $\varphi(B+X)\subseteq \varphi(B+x) \Longleftrightarrow c(B+X+x)=c(B+X)$

• Refer to the reference paper for proof and details

LOA performances

```
Data: A context K = (O; I, (\alpha, \beta)); A closed set B of the closed set lattice
       (\mathbb{C}_I, \subseteq) of K
Result: The immediate successors of B in the lattice
begin
   Init the set system Succ_B with \emptyset;
   foreach x \in I \setminus B do
        add = true;
        foreach X \in Succ_B do
           \setminus Case 1: Merge x and X in the same potential successor
           if c(B+x) = c(B+X) then
               if c(B + X + x) = c(B + x) then
                   replace X by X + x in Succ_B;
                   add=false; break;
               end
           end
           \setminus Case 2: Eliminate x as potential successor
           if c(B+x) < c(B+X) then
               if c(B + X + x) = c(B + x) then
                   add=false; break;
               end
            end
           \setminus Case 3: Eliminate X as potential successor
           if c(B+x) > c(B+X) then
               if c(B + X + x) = c(B + X) then
                   delete X from Succ_B
                \mathbf{end}
           \mathbf{end}
        end
        \setminus Case 4: Insert x as a new potential successor ;
       if add then add \{x\} to Succ_B;
    end
    return Succ_B;
end
```

 Good performances using SQL indexing mechanism

• How to get it efficient without SQL?

Reference C. Demko, K. Bertet Generation algorithm of a concept lattice with limited object access CLA, Nancy, October 2011

LOA Java implementation

- Naive implementation of LOA using "classical" data containers (*TreeSet*, *HashSet*...)
- The most time consuming task in the immediate successors computation is the calculation of the extent
- The most time consuming task in the extent computation is the intersection between two sets of elements
- Time can be won here

Attributes	Extent		
contains: <u>b</u> alloon	{p1, p2, p3, p4}		
shape: <u>w</u> ide	{p2,p5}		
shape: <u>h</u> igh	{p1, p4}		
size: <u>m</u> edium	{p3,p5}		
contains: <u>t</u> ree	{p4,p5}		

Binary words

- Objects and attributes are reduced to their index
 - They have to be ordered though
 - The index is stored to retrieve
- Extents and intents are expressed as binary words using Java's *BitSet*
- Intersection is performed by a *logical AND*
 - E(n/w) operations

	p1	p2	р3	р4	р5
contains: <u>b</u> alloon	1	1	1	1	0
shape: <u>h</u> igh	1	0	0	1	0
contains: <u>t</u> ree	0	0	0	1	1
Extent of (b,h,t)	0	0	0	1	0

Experiment

- First dataset:
 - 848 comic books' panels
 - 100 attributes (avg. 7 attributes/panels)

- Second dataset:
 - 848 comic books' panels
 - 3533 attributes (avg. 15 attributes/panels)
 - 3403 of these are shared by less than 3 panels

Results

• Calculation of the *immediate successors* of the *bottom concept* and *immediate predecessors* of the *top concept*

Computation time (in ms)	Immediate	successors	Immediate predecessors		
	O = 848	O = 848	O = 100	O = 3533	
	= 100	= 3533	= 848	= 848	
Classical + TreeSet	3.06	11767.52	549.76	994.00	
Classical + BitSet	0.77	196.58	62.39	9.77	
LOA + TreeSet	0.29	11.26	5.65	1183.75	
LOA + BitSet	0.02	0.15	0.24	1.20	

• 0.18 second on 500 randomly picked concepts

Conclusion & perspectives

- Conclusions
 - Processing time kept below the second on a reasonable machine
 - Efficient way to browse a context without generating its lattice
- Perspectives
 - Limit the impact of the amount of attributes on the performances
 - Make that library available

Thank you. Any questions?